If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-4w-336=0
a = 2; b = -4; c = -336;
Δ = b2-4ac
Δ = -42-4·2·(-336)
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2704}=52$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-52}{2*2}=\frac{-48}{4} =-12 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+52}{2*2}=\frac{56}{4} =14 $
| 2x+5.0.352941176=12 | | X+20=(2x+6) | | 1/x−2^2=0 | | 17=3u+5(u+7) | | 1/x−2^2=4 | | 9x+56=x-32 | | 1/(x−2)2=4 | | 1(x−2)2=4 | | m-3+6+m+1+8=19 | | x-62=8(x+8) | | X+1/3x=360 | | X+⅓x=360 | | 6x-3x+4-2x=6x+2 | | -1/x-6=0 | | X+3/4x=100 | | 2(2x-100)=3 | | 11^x-14^5x=-2 | | 11^x+2=14^5x | | -10=(x+10)/2 | | x=(x+10)/2 | | (2x-3)+3x=17 | | x-10=(x+10)/2 | | 48=2y^2+4y | | 2m+16=16 | | 3m+12=42 | | 9y+7-6y=-35 | | 11÷2=x | | (3k-1)(3k+1)=0 | | (3k-1)(3k+3)=0 | | 13-5x+2=25+10x+ | | 6x-3x+4-2x=8x+6 | | 3x^2-19x-24=0 |